The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks.

نویسندگان

  • Moisés Cortés-Cruz
  • Maurice Snook
  • Michael D McMullen
چکیده

Resistance to corn earworm (CEW) (Helicoverpa zea Boddie) has been attributed to high concentrations of C-glycosyl flavones and chlorogenic acid in maize (Zea mays L.) silks. The most common C-glycosyl flavones isolated from maize silks are maysin, apimaysin, and methoxymaysin, which are distinguished by their B-ring substitutions. For a better understanding of the genetic mechanisms underlying the synthesis of these compounds, we conducted a quantitative trait locus (QTL) study with two populations: (Tx501 x NC7A)F2 and (Tx501 x Mp708)F2. For chlorogenic acid, maysin, and methoxymaysin concentration, the major QTL for both populations was located on chromosome 4 near umc1963. For apimaysin, the major QTL in both populations was located at the position of the pr1 locus on chromosome 5. The QTL alleles on chromosome 4 that increased the synthesis of methoxymaysin significantly decreased the synthesis of maysin and chlorogenic acid. This decrease in maysin concentration was four-fold greater than the increase in methoxymaysin. Our results indicate that the QTL on chromosome 4, responsible for the increase in methoxymaysin synthesis, alters the dynamics of both the phenylpropanoid and flavonoid pathways.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.).

C-glycosyl flavones in maize silks confer resistance (i.e., antibiosis) to corn earworm (Helicoverpa zea [Boddie]) larvae and are distinguished by their B-ring substitutions, with maysin and apimaysin being the di- and monohydroxy B-ring forms, respectively. Herein, we examine the genetic mechanisms underlying the synthesis of maysin and apimaysin and the corresponding effects on corn earworm l...

متن کامل

Salmon silk genes contribute to the elucidation of the flavone pathway in maize (Zea mays L.).

We utilized maize (Zea mays L.) lines expressing the salmon silk (sm) phenotype, quantitative trait locus analysis, and analytical chemistry of flavone compounds to establish the order of undefined steps in the synthesis of the flavone maysin in maize silks. In addition to the previously described sm1 gene, we identified a second sm locus, which we designate sm2, located on the long arm of maiz...

متن کامل

Robustness of QTLs across germplasm pools using a model quantitative trait.

Knowledge of the inheritance of C-glycosyl flavone synthesis in maize (Zea mays L.) silk tissues has been acquired through detailed genetic studies involving primarily germplasm from the Corn Belt Dent race. To test the robustness of this genetic knowledge, we examined C-glycosyl flavone synthesis in a genetically distinct germplasm pool, popcorn. C-glycosyl flavone profiles and levels and the ...

متن کامل

Quantitative trait loci and metabolic pathways (Zea mays L.yf lavonoidyf lavoneyinsect resistanceyHelicoverpa zea)

The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) bec...

متن کامل

Engineering secondary metabolism in maize cells by ectopic expression of transcription factors.

Manipulation of plant natural product biosynthesis through genetic engineering is an attractive but technically challenging goal. Here, we demonstrate that different secondary metabolites can be produced in cultured maize cells by ectopic expression of the appropriate regulatory genes. Cell lines engineered to express the maize transcriptional activators C1 and R accumulate two cyanidin derivat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genome

دوره 46 2  شماره 

صفحات  -

تاریخ انتشار 2003